4.7 Article

Hydrogen Sulfide Ameliorates Tobacco Smoke-Induced Oxidative Stress and Emphysema in Mice

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 15, 期 8, 页码 2121-2134

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2010.3821

关键词

-

资金

  1. NIH [R01HL088261]
  2. Flight Attendants Medical Research Institute [072104]
  3. American Heart Association Greater Southeast Affiliate [0855338E]

向作者/读者索取更多资源

Aims: The mutual interactions between reactive oxygen species, airway inflammation, and alveolar cell death play crucial role in the pathogenesis of chronic obstructive pulmonary disease (COPD). In the present study, we investigated the possibility that hydrogen sulfide (H2S) donor sodium hydrosulfide (NaHS) might be a novel option for intervention in COPD. Results: We used a mouse model of tobacco smoke (TS)-induced emphysema. Mice were injected with H2S donor NaHS (50 mu mol/kg in 0.25 ml phosphate buffer saline, intraperitoneally) or vehicle daily before exposed to TS for 1 h/day, 5 days/week for 12 and 24 weeks. We found that NaHS ameliorated TS-induced increase in mean linear intercepts, the thickness of bronchial walls, and the numbers of total cell counts as well as neutrophils, monocytes, and tumor necrosis factor alpha in bronchial alveolar lavage. Moreover, NaHS reduced increases in right ventricular systolic pressure, the thickness of pulmonary vascular walls, and the ratio of RV/LV+S in TS-exposed mice. Further, TS exposure for 12 and 24 weeks reduced the protein contents of cystathionine gamma-lyase (CGL), cystathionine beta-synthetase (CBS), nuclear erythroid-related factor 2 (Nrf2), P-ser473-Akt, as well as glutathione/oxidized glutathione ratio in the lungs. TS-exposed lungs exhibited large amounts of 8-hydroxyguanine-positive and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. Treatment with NaHS increased P-ser473-Akt and attenuated TS-induced reduction of CGL, CBS, and Nrf2 as well as glutathione/oxidized glutathione ratio in the lungs. NaHS also reduced amounts of 8-hydroxyguanine-positive, terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells and active caspase-3 in TS-exposed lungs. Additionally, knocking-down Akt protein abolished the protective effects of NaHS against TS-induced apoptosis and downregulation of Nrf2, CGL, and CBS in pulmonary artery endothelial cells. Conclusion: These results indicate that NaHS protects against TS-induced oxidative stress, airway inflammation, and remodeling and ameliorates the development of emphysema and pulmonary hypertension. H2S donors have therapeutic potential for the prevention and treatment of COPD caused by TS. Antioxid. Redox Signal. 15, 2121-2134.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据