4.7 Article

Transition pathways in complex systems: Application of the finite-temperature string method to the alanine dipeptide

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 123, 期 13, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2013256

关键词

-

向作者/读者索取更多资源

The finite-temperature string method proposed by E, [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002)] is a very effective way of identifying transition mechanisms and transition rates between metastable states in systems with complex energy landscapes. In this paper, we discuss the theoretical background and algorithmic details of the finite-temperature string method, as well as the application to the study of isomerization reaction of the alanine dipeptide, both in vacuum and in explicit solvent. We demonstrate that the method allows us to identify directly the isocommittor surfaces, which are approximated by hyperplanes, in the region of configuration space where the most probable transition trajectories are concentrated. These results are verified subsequently by computing directly the committor distribution on the hyperplanes that define the transition state region. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据