4.7 Article

Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils

期刊

PLANT AND SOIL
卷 276, 期 1-2, 页码 95-113

出版社

SPRINGER
DOI: 10.1007/s11104-005-3343-8

关键词

flexural stiffness; leaf mass per area; leaf nutrition; sclerophylly; strength; toughness

向作者/读者索取更多资源

Sclerophylly is a common feature of vegetation on infertile soils, and its adaptive significance has been linked to nutrient-use efficiency by protection of leaves to maximise carbon gain. However, there has been little investigation of how the leaf mechanical properties that contribute to the phenomenon of sclerophylly vary along nutrient gradients. In this paper, we investigate how leaf mechanical properties vary among plants on three contrasting soil types (grey sand, laterite soil, and soil overlying dolerite) in a Mediterranean climate in southwestern Australia. Most species were sclerophyllous, but there was 5-fold variation in leaf mass per unit area (LMA) and 17- to 473-fold variation in mechanical properties among species. Species growing on laterite and/or sand (low-nutrient soils) had higher punch strength, work (a measure of toughness) to punch, specific (per unit leaf thickness) work to punch, work to shear, specific work to shear, and flexural stiffness (EIW) than those on dolerite soils (higher in nutrients). There were few differences in mean values of leaf mechanical properties between the two low-nutrient soils, possibly because the lower concentration of nutrients in the sand is balanced by the greater soil volume than the laterite soil (higher concentration of nutrients, but shallower). There were also few differences in leaf properties between plants of the same species growing on contrasting soil types. There was some variation among sclerophyllous species in their mechanical characteristics, but overall, EIW provided the strongest contribution to sclerophylly, explaining up to 81% of the variation in LMA. There was no evidence of differences among soil types in the relationships of mechanical properties with LMA, and therefore, no evidence of variation in the mechanical constitution of sclerophylly among soil types.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据