4.7 Article

Prion Protein Expression and Functional Importance in Skeletal Muscle

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 15, 期 9, 页码 2465-2475

出版社

MARY ANN LIEBERT INC
DOI: 10.1089/ars.2011.3945

关键词

-

资金

  1. National Institutes of Health [AR055974, 1P01AI077774-015261, AG026147]
  2. American Heart Association
  3. University of Kentucky Center for Muscle Biology

向作者/读者索取更多资源

Skeletal muscle expresses prion protein (PrP) that buffers oxidant activity in neurons. Aims: We hypothesize that PrP deficiency would increase oxidant activity in skeletal muscle and alter redox-sensitive functions, including contraction and glucose uptake. We used real-time polymerase chain reaction and Western blot analysis to measure PrP mRNA and protein in human diaphragm, five murine muscles, and muscle-derived C2C12 cells. Effects of PrP deficiency were tested by comparing PrP-deficient mice versus wild-type mice and morpholino-knockdown versus vehicle-treated myotubes. Oxidant activity (dichlorofluorescin oxidation) and specific force were measured in murine diaphragm fiber bundles. Results: PrP content differs among mouse muscles (gastrocnemius > extensor digitorum longus, EDL > tibialis anterior, TA; soleus > diaphragm) as does glycosylation (di-, mono-, nonglycosylated; gastrocnemius, EDL, TA = 60%, 30%, 10%; soleus, 30%, 40%, 30%; diaphragm, 30%, 30%, 40%). PrP is predominantly di- glycosylated in human diaphragm. PrP deficiency decreases body weight (15%) and EDL mass (9%); increases cytosolic oxidant activity (fiber bundles, 36%; C2C12 myotubes, 7%); and depresses specific force (12%) in adult (8-12 mos) but not adolescent (2 mos) mice. Innovation: This study is the first to directly assess a role of prion protein in skeletal muscle function. Conclusions: PrP content varies among murine skeletal muscles and is essential for maintaining normal redox homeostasis, muscle size, and contractile function in adult animals. Antioxid. Redox Signal. 15, 2465-2475.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据