4.7 Review

Cell Signaling by Protein Carbonylation and Decarbonylation

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 12, 期 3, 页码 393-404

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2009.2805

关键词

-

资金

  1. National Institutes of Health [R01 HL72844]
  2. American Heart Association

向作者/读者索取更多资源

Reactive oxygen species (ROS) serve as mediators of signal transduction. However, mechanisms of how ROS influence the target molecules to elicit signaling event have not been defined. Our laboratory recently accumulated evidence for the role of protein carbonylation in the mechanism of ROS signaling. This concept originated from experiments in which pulmonary artery smooth muscle cells were treated with endothelin-1 to understand the mechanism of cell growth. Endothelin-1 was found to promote protein carbonylation in an endothelin receptor-and Fenton reaction-dependent manner. Mass spectrometry identified proteins that are carbonylated in response to endothelin-1, including annexin A1. Our experiments generated a hypothesis that endothelin-1-mediated carbonylation and subsequent degradation of annexin A1 promote cell growth. This mechanism was found also to occur in response to other signaling activators such as serotonin and platelet-derived growth factor in smooth muscle cells of pulmonary circulation, systemic circulation, and the airway, as well as in cardiac muscle cells, suggesting the universal role of this pathway. We also discovered a process of decarbonylation that defines transient kinetics of carbonylation signals in certain conditions. We propose that protein carbonylation and decarbonylation serve as a mechanism of signal transduction. Antioxid. Redox Signal. 12, 393-404.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据