4.6 Article

Adenine and adenosine salvage pathways in erythrocytes and the role of S-adenosylhomocysteine hydrolase -: A theoretical study using elementary flux modes

期刊

FEBS JOURNAL
卷 272, 期 20, 页码 5278-5290

出版社

WILEY
DOI: 10.1111/j.1742-4658.2005.04924.x

关键词

elementary flux modes; enzyme deficiencies; erythrocytes; nucleotide metabolism; salvage pathways

向作者/读者索取更多资源

This article is devoted to the study of redundancy and yield of salvage pathways in human erythrocytes. These cells are not able to synthesize ATP de novo. However, the salvage (recycling) of certain nucleosides or bases to give nucleotide triphosphates is operative. As the salvage pathways use enzymes consuming ATP as well as enzymes producing ATP, it is not easy to see whether a net synthesis of ATP is possible. As for pathways using adenosine, a straightforward assumption is that these pathways start with adenosine kinase. However, a pathway bypassing this enzyme and using S-adenosylhomocysteine hydrolase instead was reported. So far, this route has not been analysed in detail. Using the concept of elementary flux modes, we investigate theoretically which salvage pathways exist in erythrocytes, which enzymes belong to each of these and what relative fluxes these enzymes carry. Here, we compute the net overall stoichiometry of ATP build-up from the recycled substrates and show that the network has considerable redundancy. For example, four different pathways of adenine salvage and 12 different pathways of adenosine salvage are obtained. They give different ATP/glucose yields, the highest being 3 : 10 for adenine salvage and 2 : 3 for adenosine salvage provided that adenosine is not used as an energy source. Implications for enzyme deficiencies are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据