4.7 Review

Electrophysiology of Reactive Oxygen Production in Signaling Endosomes

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 11, 期 6, 页码 1335-1347

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2008.2448

关键词

-

资金

  1. NIH
  2. Office of Research and Development, Department of Veterans Affairs
  3. American Heart Association

向作者/读者索取更多资源

Endosome trafficking and function require acidification by the vacuolar ATPase (V-ATPase). Electrogenic proton (H+) transport reduces the pH and creates a net positive charge in the endosomal lumen. Concomitant chloride (Cl-) influx has been proposed to occur via ClC Cl-/H+ exchangers. This maintains charge balance and drives Cl- accumulation, which may itself be critical to endosome function. Production of reactive oxygen species (ROS) in response to cytokines occurs within specialized endosomes that form in response to receptor occupation. ROS production requires an NADPH oxidase (Nox) and the ClC-3 Cl-/H+ exchanger. Like the V-ATPase, Nox activity is highly electrogenic, but separates charge with an opposite polarity (lumen negative). Here we review established paradigms of early endosomal ion transport focusing on the relation between the V-ATPase and ClC proteins. Electrophysiologic constraints on Nox-mediated vesicular ROS production are then considered. The potential for ClC-3 to participate in charge neutralization of both proton (V-ATPase) and electron (Nox) transport is discussed. It is proposed that uncompensated charge separation generated by Nox enzymatic activity could be used to drive secondary transport into negatively charged vesicles. Further experimentation will be necessary to establish firmly the biochemistry and functional implications of endosomal ROS production. Antioxid. Redox Signal. 11, 1335-1347.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据