4.7 Review

Evolution of catalases from bacteria to humans

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 10, 期 9, 页码 1527-1547

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2008.2046

关键词

-

向作者/读者索取更多资源

Excessive hydrogen peroxide is harmful for almost all cell components, so its rapid and efficient removal is of essential importance for aerobically living organisms. Conversely, hydrogen peroxide acts as a second messenger in signal-transduction pathways. H2O2 is degraded by peroxidases and catalases, the latter being able both to reduce H2O2 to water and to oxidize it to molecular oxygen. Nature has evolved three protein families that are able to catalyze this dismutation at reasonable rates. Two of the protein families are heme enzymes: typical catalases and catalase-peroxidases. Typical catalases comprise the most abundant group found in Eubacteria, Archaeabacteria, Protista, Fungi, Plantae, and Animalia, whereas catalase-peroxidases are not found in plants and animals and exhibit both catalatic and peroxidatic activities. The third group is a minor bacterial protein family with a dimanganese active site called manganese catalases. Although catalyzing the same reaction (2 H2O2 -> 2 H2O + O-2), the three groups differ significantly in their overall and active-site architecture and the mechanism of reaction. Here, we present an overview of the distribution, phylogeny, structure, and function of these enzymes. Additionally, we report about their physiologic role, response to oxidative stress, and about diseases related to catalase deficiency in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据