4.7 Review

Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 10, 期 5, 页码 843-889

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2007.1853

关键词

-

向作者/读者索取更多资源

Reversible phosphorylation of protein tyrosine residues by polypeptide growth factor-receptor protein tyrosine kinases is implicated in the control of fundamental cellular processes including the cell cycle, cell adhesion, and cell survival, as well as cell proliferation and differentiation. During the last decade, it has become apparent that receptor protein tyrosine kinases and the signaling pathways they activate belong to a large signaling network. Such a network can be regulated by various extracellular cues, which include cell adhesion, agonists of G protein-coupled receptors, and oxidants. It is well documented that signaling initiated by receptor protein tyrosine kinases is directly dependent on the intracellular production of oxidants, including reactive oxygen and nitrogen species. Accumulated evidence indicates that the intracellular redox environment plays a major role in the mechanisms underlying the actions of growth factors. Oxidation of cysteine thiols and nitration of tyrosine residues on signaling proteins are described as posttranslational modifications that regulate, positively or negatively, protein tyrosine phosphorylation (PTP). Early observations described the inhibition of PTP activities by oxidants, resulting in increased levels of proteins phosphorylated on tyrosine. Therefore, a redox circuitry involving the increasing production of intracellular oxidants associated with growth-factor stimulation/cell adhesion, oxidative reversible inhibition of protein tyrosine phosphatases, and the activation of protein tyrosine kinases can be delineated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据