4.6 Article

Optoelectronic properties of polymer-nanocrystal composites active at near-infrared wavelengths

期刊

JOURNAL OF APPLIED PHYSICS
卷 98, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2064307

关键词

-

向作者/读者索取更多资源

We report a systematic study of the optoelectronic processes occurring in composites made of near-infrared (IR) emitting nanocrystals and conjugated polymers. We focus on PbSe and InAs/ZnSe blended with polyphenylenevinylene-type polymers. We find that the process responsible for quenching the visible luminescence of the polymer by the nanocrystal varies depending on the nanocrystal composite. Moreover, the high (66%) energy-transfer efficiency from the polymer to the PbSe nanocrystal does result in significant emission at the near IR. Our measurements suggest that the host may be doping the PbSe nanocrystal, thus making the nonradiative Auger process favorable. For InAs we find the energy levels well aligned inside the polymer band gap, making it an efficient charge trap which acts as a luminescence center. Through two-dimensional numerical modeling of the charge transport in such composite films we highlight the importance of morphology (nanocrystal distribution) control. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据