4.4 Article

Characterization of a novel glucosamine-6-phosphate deaminase from a hyperthermophilic archaeon

期刊

JOURNAL OF BACTERIOLOGY
卷 187, 期 20, 页码 7038-7044

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.187.20.7038-7044.2005

关键词

-

向作者/读者索取更多资源

A key step in amino sugar metabolism is the interconversion between fructose-6-phosphate (Fru6P) and glucosamine-6-phosphate (GIcN6P). This conversion is catalyzed in the catabolic and anabolic directions by GlcN6P deaminase and GlcN6P synthase, respectively, two enzymes that show no relationship with one another in terms of primary structure. In this study, we examined the catalytic properties and regulatory features of the glmD gene product (GlmD(Tk)) present within a chitin degradation gene cluster in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Although the protein GlmD(Tk) was predicted as a probable sugar isomerase related to the C-terminal sugar isomerase domain of GlcN6P synthase, the recombinant GlmD(Tk), clearly exhibited GlcN6P deaminase activity, generating Fru6P and ammonia from GlcN6P. This enzyme also catalyzed the reverse reaction, the ammonia-dependent amination/isomerization of Fru6P to GIcN6P, whereas no GlcN6P synthase activity dependent on glutamine was observed. Kinetic analyses clarified the preference of this enzyme for the deaminase reaction rather than the reverse one, consistent with the catabolic function of GlmD(Tk). In T. kodakaraensis cells, glmD(Tk) was polycistronically transcribed together with upstream genes encoding an ABC transporter and a downstream exo-beta-glucosaminidase gene (glmA(Tk)) within the gene cluster, and their expression was induced by the chitin degradation intermediate, diacetylehitobiose. The results presented here indicate that GlmD(Tk) is actually a GlcN6P deaminase functioning in the entry of chitin-derived monosaccharides to glycolysis in this hyperthermophile. This enzyme is the first example of an archaeal GIcN6P deaminase and is a structurally novel type distinct from any previously known GlcN6P deaminase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据