4.2 Article

The development of structural and mechanical anisotropy in fibroblast populated collagen gels

出版社

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.1992525

关键词

-

资金

  1. NCRR NIH HHS [P41 RR08605] Funding Source: Medline
  2. NHLBI NIH HHS [R01 HL075639] Funding Source: Medline

向作者/读者索取更多资源

An in vitro model system was developed to study structure-function relationships and the development of structural and mechanical anisotropy. in collagenous tissues. Fibroblast-populated collagen gels were constrained either biaxially or uniaxially. Gel remodeling, biaxial mechanical properties, and collagen orientation were determined after 72 h of culture. Collagen gels contracted spontaneously in the unconstrained direction, uniaxial mechanical constraints produced structural anisotropy, and this structural anisotropy was associated with mechanical anisotropy. Cardiac and tendon fibroblasts were compared to test the hypothesis that tendon fibroblasts should generate greater anisotropy in vitro. However no differences were seen in either structure or mechanics of collagen gels populated with these two cell types, or between fibroblast populated gels and acellular gels. This study demonstrates our ability to control and measure the development of structural. and mechanical anisotropy due to imposed mechanical constraints in a fibroblast-populated collagen gel model system. While imposed constraints were required for the development of anisotropy in this system, active remodeling of the gel by fibroblasts was not. This model system will provide a basis for investigating structure-function relationships in engineered constructs and for studying mechanisms underlying the development of anisotropy in collagenous tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据