4.6 Article

Thrombin impairs alveolar fluid clearance by promoting endocytosis of Na+,K+-ATPase

出版社

AMER THORACIC SOC
DOI: 10.1165/rcmb.2004-0407OC

关键词

acute respiratory distress syndrome; coagulation; permeability; protein kinase C-xi; reactive oxygen species

向作者/读者索取更多资源

Coagulation is an emerging area of interest in the pathogenesis and treatment of acute lung injury. Concentrations of the edemagenic coagulation protease thrombin are elevated in plasma and lavage fluids from afflicted patients. We explored the impact of thrombin on the formation and resolution of alveolar edema. Intravascularly applied thrombin inhibited active transepithelial Na-22 transport in intact rabbit lungs, suppressing alveolar fluid clearance. Epithelial permeability was unaffected, whereas endothelial permeability was increased. In A549 human lung epithelial cells and in mouse primary alveolar type II cells, thrombin blocked ouabain-sensitive Na+,K+-ATPase-mediated Rb-86(+) uptake, without altering amiloride-sensitive sodium currents. Furthermore, thrombin downregulated cell-surface expression of Na+,K+-ATPase, but not ENaC alpha and beta subunits. The endocytosis inhibitor phalloidin oleate blocked all thrombin-induced effects on sodium transport activity. Similarly, diphenyleneiodonium chloride, an inhibitor of reactive oxygen radical production, as well as a protein kinase C-zeta inhibitor, prevented these thrombin-induced effects. Thus, thrombin signaling via reactive oxygen species and protein kinase C-zeta promotes Na+,K+-ATPase enclocytosis, resulting in loss of function. We propose here a dual role for thrombin in mediating disturbances to fluid balance in the lung: thrombin concomitantly provokes edema formation by increasing endothelial permeability, and inhibits alveolar edema resolution by blocking Na+,K+-ATPase function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据