4.4 Article

Mechanism of IFN-γ-induced endocytosis of tight junction proteins:: Myosin II-dependent vacuolarization of the apical plasma membrane

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 16, 期 10, 页码 5040-5052

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E05-03-0193

关键词

-

资金

  1. NIDDK NIH HHS [DK 61379, R01 DK061379, DK 59888, R01 DK059888] Funding Source: Medline

向作者/读者索取更多资源

Disruption of epithelial barrier by proinflammatory cytokines such as IFN-gamma represents a major pathophysiological consequence of intestinal inflammation. We have previously shown that IFN-gamma increases paracellular permeability in model T84 epithelial cells by inducing endocytosis of tight junction (TJ) proteins occludin, JAM-A, and claudin-1. The present study was designed to dissect mechanisms of IFN-gamma-induced endocytosis of epithelial TJ proteins. IFN-gamma treatment of T84 cells resulted in internalization of TJ proteins into large actin-coated vacuoles that originated from the apical plasma membrane and resembled the vacuolar apical compartment (VAC) previously observed in epithelial cells that lose cell polarity. The IFN-gamma dependent formation of VACs required ATPase activity of a myosin II motor but was not dependent on rapid turnover of F-actin. In addition, activated myosin II was observed to colocalize with VACs after IFN-gamma exposure. Pharmacological analyses revealed that formation of VACs and endocytosis of TJ proteins was mediated by Rho-associated kinase (ROCK) but not myosin light chain kinase (MLCK). Furthermore, IFN-gamma treatment resulted in activation of Rho GTPase and induced expressional up-regulation of ROCK. These results, for the first time, suggest that IFN-gamma induces endocytosis of epithelial TJ proteins via RhoA/ROCK-mediated, myosin II-dependent formation of VACs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据