4.5 Article

Spatio-temporal activation of cyclic AMP response element-binding protein, activity-regulated cytoskeletal-associated protein and brain-derived nerve growth factor: a mechanism for pontine-wave generator activation-dependent two-way active-avoidance memory processing in the rat

期刊

JOURNAL OF NEUROCHEMISTRY
卷 95, 期 2, 页码 418-428

出版社

WILEY
DOI: 10.1111/j.1471-4159.2005.03378.x

关键词

amygdala; dorsal hippocampus; frontal cortex; memory consolidation; occipital cortex; rapid eye movement sleep

资金

  1. NIMH NIH HHS [MH59839] Funding Source: Medline
  2. NINDS NIH HHS [NS34004] Funding Source: Medline

向作者/读者索取更多资源

The present study explored possible physiological and molecular mechanisms of pontine-wave (P-wave) generator activation-dependent memory processing in the rat using a two-way active-avoidance learning paradigm. The results show that learning training increased rapid eye movement sleep and activated brainstem cells in the P-wave generator. During this period, there was a time-dependent increase in phosphorylation of cAMP response element-binding protein (CREB) in the dorsal hippocampus and amygdala and increased synthesis of activity-regulated cytoskeletal-associated protein (Arc) in the dorsal hippocampus, amygdala, frontal cortex and occipital cortex. Learning training also increased synthesis of brain-derived nerve growth factor (BDNF) in the occipital cortex, amygdala and dorsal hippocampus at different time intervals. During this time, the levels of nerve growth factor did not change. The results also show that the increase in rapid eye movement sleep P-wave density during the post-training 3-h recording session is positively correlated with the increased levels of phosphorylated CREB, BDNF and Arc in the dorsal hippocampus. These results suggest that memory processing of two-way active-avoidance learning may involve excitation of P-wave-generating cells in the brainstem and increased expression of phosphorylated CREB, Arc and BDNF in a time-dependent manner in the forebrain. These dynamic changes in cellular and molecular features provide considerable insight into the mechanisms of the P-wave generator activation-dependent memory consolidation process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据