4.6 Article

The anticancer activity of the fungal metabolite terrecyclic acid A is associated with modulation of multiple cellular stress response pathways

期刊

MOLECULAR CANCER THERAPEUTICS
卷 4, 期 10, 页码 1569-1576

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-05-0050

关键词

-

类别

资金

  1. NCI NIH HHS [1R01 CA09025-01] Funding Source: Medline

向作者/读者索取更多资源

Tumors are dependent on cellular stress responses, in particular the heat shock response, for survival in their hypoxic, acidotic, and nutrient-deprived microenvironments. Using cell-based reporter assays, we have identified terrecyclic acid A (TCA) from Aspergillus terreus, a fungus inhabiting the rhizosphere of Opuntia versicolor of the Sonoran desert, as a small-molecule inducer of the heat shock response that shows anticancer activity. Further characterization suggested that TCA also affects oxidative and inflammatory cellular stress response pathways. The presence of an alpha-methylene ketone moiety suggested that TCA may form adducts with sulfhydryl groups of proteins. Reaction with labile intracellular cysteines was supported by our finding that the glutathione precursor N-acetyl-cysteine protected tumor cells from the cytotoxic effects of TCA whereas the glutathione-depleting agent buthionine sulfoximine enhanced its activity. Related sesquiterpenes have been shown to increase levels of reactive oxygen species (ROS) and to inhibit nuclear factor kappa B INF-kappa B) transcriptional activity. To assess whether TCA could have similar activities, we used a ROS-sensitive dye and flow cytometry to show that TCA does indeed increase ROS levels in 3LL cells. When tested in cells carrying NF-kappa B reporter constructs, TCA also exhibited concentration-dependent inhibition of cytokine-induced NF-kappa B transcriptional activity. These findings suggest that TCA modulates multiple stress pathways-the oxidative, heat shock, and inflammatory responses-in tumor cells that promote their survival. Small-molecule natural products such as TCA may serve as useful probes for understanding the relationships between these pathways, potentially providing leads for the design of novel and effective anticancer drugs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据