4.7 Article

Characterization of Klebsiella sp Strain 10982, a Colonizer of Humans That Contains Novel Antibiotic Resistance Alleles and Exhibits Genetic Similarities to Plant and Clinical Klebsiella Isolates

期刊

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
卷 58, 期 4, 页码 1879-1888

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.01605-13

关键词

-

资金

  1. NIH [K12RR023250, 1K24AI079040-01A1, 2R01AI060859-05]
  2. state of Maryland

向作者/读者索取更多资源

A unique Klebsiella species strain, 10982, was cultured from a perianal swab specimen obtained from a patient in the University of Maryland Medical Center intensive care unit. Klebsiella sp. 10982 possesses a large IncA/C multidrug resistance plasmid encoding a novel FOX AmpC beta-lactamase designated FOX-10. A novel variant of the LEN beta-lactamase was also identified. Genome sequencing and bioinformatic analysis demonstrated that this isolate contains genes associated with nitrogen fixation, allantoin metabolism, and citrate fermentation. These three gene regions are typically present in either Klebsiella pneumoniae clinical isolates or Klebsiella nitrogen-fixing endophytes but usually not in the same organism. Phylogenomic analysis of Klebsiella sp. 10982 and sequenced Klebsiella genomes demonstrated that Klebsiella sp. 10982 is present on a branch that is located intermediate between the genomes of nitrogen-fixing endophytes and K. pneumoniae clinical isolates. Metabolic features identified in the genome of Klebsiella sp. 10982 distinguish this isolate from other Klebsiella clinical isolates. These features include the nitrogen fixation (nif) gene cluster, which is typically present in endophytic Klebsiella isolates and is absent from Klebsiella clinical isolates. Additionally, the Klebsiella sp. 10982 genome contains genes associated with allantoin metabolism, which have been detected primarily in K. pneumoniae isolates from liver abscesses. Comparative genomic analysis of Klebsiella sp. 10982 demonstrated that this organism has acquired genes conferring new metabolic strategies and novel antibiotic resistance alleles, both of which may enhance its ability to colonize the human body.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据