4.7 Article

Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex

期刊

NATURE NEUROSCIENCE
卷 8, 期 10, 页码 1364-1370

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1545

关键词

-

向作者/读者索取更多资源

Neurons in sensory systems respond to stimuli within their receptive fields, but the magnitude of the response depends on specific stimulus features. In the rodent whisker system, the response magnitude to the deflection of a particular whisker is, in most cells, dependent on the direction of deflection. Here we use in vivo intracellular recordings from thalamorecipient neurons in layers 3 and 4 of the rat barrel cortex to elucidate the dynamics of the synaptic inputs underlying direction selectivity. We show that cells are direction selective despite a broadly tuned excitatory and inhibitory synaptic input. Selectivity emerges from a direction-dependent temporal shift of excitation relative to inhibition. For preferred direction deflections, excitation precedes inhibition, but as the direction diverges from the preferred, this separation decreases. Our results illustrate a mechanism by which the timing of the synaptic inputs, and not their relative peak amplitudes, primarily determine feature selectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据