4.7 Article

Selective Target Inactivation Rather than Global Metabolic Dormancy Causes Antibiotic Tolerance in Uropathogens

期刊

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
卷 58, 期 4, 页码 2089-2097

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.02552-13

关键词

-

资金

  1. Frederick Banting and Charles Best Canadian Institutes of Health Research

向作者/读者索取更多资源

Persister cells represent a multidrug-tolerant (MDT), physiologically distinct subpopulation of bacteria. The ability of these organisms to survive lethal antibiotic doses raises concern over their potential role in chronic disease, such as recurrent urinary tract infection (RUTI). Persistence is believed to be conveyed through global metabolic dormancy, which yields organisms unresponsive to external stimuli. However, recent studies have contested this stance. Here, various antibiotics that target different cellular processes were used to dissect the activity of transcription, translation, and peptidoglycan turnover in persister cells. Differential susceptibility patterns were found in type I and type II persisters, and responses differed between Staphylococcus saprophyticus and Escherichia coli uropathogens. Further, SOS-deficient strains were sensitized to ciprofloxacin, suggesting DNA gyrase activity in persisters and indicating the importance of active DNA repair systems for ciprofloxacin tolerance. These results indicate that global dormancy per se cannot sufficiently account for antibiotic tolerance. Rather, the activity of individual cellular processes dictates multidrug tolerance in an antibiotic-specific fashion. Furthermore, the susceptibility patterns of persisters depended on their mechanisms of onset, with subinhibitory antibiotic pretreatments selectively shutting down cognate targets and increasing the persister fraction against the same agent. Interestingly, antibiotics targeting transcription and translation enhanced persistence against multiple agents indirectly related to these processes. Conducting these assays with uropathogenic E. coli isolated from RUTI patients revealed an enriched persister fraction compared to organisms cleared with standard antibiotic therapy. This finding suggests that persister traits are either selected for during prolonged antibiotic treatment or initially contribute to therapy failure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据