3.8 Article

Junction temperature in ultraviolet light-emitting diodes

出版社

JAPAN SOC APPLIED PHYSICS
DOI: 10.1143/JJAP.44.7260

关键词

junction temperature; UV LEDs; AlGaN; temperature coefficient; diode-forward voltage; and thermal resistance

向作者/读者索取更多资源

The junction temperature and thermal resistance of AlGaN and GaInN ultraviolet (UV) light-emitting diodes (LEDs) emitting at 295 and 375 nm, respectively, are measured using the temperature coefficient of diode-forward voltage. An analysis of the experimental method reveals that the diode-forward voltage has a high accuracy of +/- 3 degrees C. A comprehensive theoretical model for the dependence of diode-forward voltage (V(f)) on junction temperature (T(j)) is developed taking into account the temperature dependence of the energy gap and the temperature coefficient of diode resistance. The difference between the junction voltage temperature coefficient (dV(j)/dT) and the forward voltage temperature coefficient (dV(f)/dT) is shown to be caused by diode series resistance. The data indicate that the n-type neutral regions are the dominant resistive element in deep-UV devices. A linear relationship between junction temperature and current is found. Junction temperature is also measured by the emission-peak-shift method. The high-energy slope of the spectrum is explored in the measurement of carrier temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据