4.4 Article

Stopping, storing, and releasing light in quantum-well Bragg structures

出版社

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.22.002144

关键词

-

类别

向作者/读者索取更多资源

We present a theoretical analysis of light propagation in one-dimensional resonant photonic bandgap structures (RPBGs). The analysis is aimed at evaluating the feasibility of controlled stopping, storing, and releasing of light pulses by parametric manipulation of the RPBG's bandstructure. First we lay the conceptual foundation of light-pulse delay by means of band structure control in infinite RPBGs, and then we contrast the idealized concepts with numerical results for realistic, finite-sized RPBGs. For a physical model for RPBGs, we use semiconductor quantum-well Bragg structures, but the general analysis is valid for a wider class of RPBG. We show that the usefulness of RPBGs for optical delay lines depends critically on the number of quantum wells and the dephasing and loss mechanisms in each unit cell of the RPBG, and we also outline optimization strategies in terms of spectral light characteristics as well as quasi-antireflection coating of the RPBGs. (c) 2005 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据