4.5 Article

Rapid thermal conductivity measurement with a hot disk sensor - Part 1. Theoretical considerations

期刊

THERMOCHIMICA ACTA
卷 436, 期 1-2, 页码 122-129

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.tca.2005.06.026

关键词

thermal conductivity; hot disk technique; thermal diffusivity

向作者/读者索取更多资源

The hot disk technique represents a transient plane source method for rapid thermal conductivity and thermal diffusivity measurement. The main advantages of the hot disk technique include: wide thermal conductivity range, from 0.005 W/(m K) to 500 W/(m K); wide range of materials types, from liquid, gel to solid; easy sample preparation; non-destructive; and more importantly, high accuracy. In this paper, the basic theory of thermal conductivity measurement with hot disk sensor will be discussed. Starting from the instantaneous point source solution, the mathematical expression of the average temperature change in the sensor surface during a hot disk measurement will be derived. This temperature change, which can be accurately determined by measuring the electrical resistance of the sensor, is highly dependent on the thermal transport properties of the surrounding material. By analyzing this temperature change as a function of time, it is possible to deduce the thermal conductivity and the thermal diffusivity of the surrounding material. Several practical considerations, from sample size requirement to the elimination of thermal contact resistance, will also be discussed. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据