4.7 Article

Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions

期刊

JOURNAL OF EXPERIMENTAL MEDICINE
卷 202, 期 7, 页码 975-986

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20050421

关键词

-

向作者/读者索取更多资源

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized primarily at the apical or luminal surfaces of epithelial cells that line the airway, gut, and exocrine glands; it is well established that CFTR plays a pivotal role in cholera toxin (CTX)-induced secretory diarrhea. Lysophosphatidic acid (LPA), a naturally occurring phospholipid present in blood and foods, has been reported to play a vital role in a variety of conditions involving gastrointestinal wound repair, apoptosis, inflammatory bowel disease, and diarrhea. Here we show, for the first time, that type 2 LPA receptors (LPA(2)) are expressed at the apical surface of intestinal epithelial cells, where they form a macromolecular complex with Na+/H+ exchanger regulatory factor-2 and CFTR through a PSD95/Dlg/ZO-1-based interaction. LPA inhibited CFTR-dependent iodide efflux through LPA(2)-mediated G(i) pathway, and LPA inhibited CFTR-mediated short-circuit currents in a compartmentalized fashion. CFTR-dependent intestinal fluid secretion induced by CTX in mice was reduced substantially by LPA administration; disruption of this complex using a cell-permeant LPA(2)-specific peptide reversed LPA(2)-mediated inhibition. Thus, LPA-rich foods may represent an alternative method of treating certain forms of diarrhea.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据