4.8 Article

Surface-mounted altitudinal molecular rotors in alternating electric field: Single-molecule parametric oscillator molecular dynamics

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0506183102

关键词

Brownian molecular rotors; driven molecular rotors

向作者/读者索取更多资源

Molecular dynamics simulations of the response to oscillating electric field elicited from an altitudinal dipolar molecular rotor mounted on the Au(111) surface and previously studied experimentally in static fields show unidirectional rotation in one of the three pairs of conformational enantiomers. The simulations are based on the universal force field and take into account electronic friction in the metal through its effect on the image charges. The rotor consists of two cobalt sandwich posts whose upper decks carry a biphenyl-like rotator with a dipole moment perpendicular to the rotation axle, mounted parallel to the surface. A phase diagram of rotor performance at 10 K as a function of field frequency and amplitude contains five unidirectional rotation regions: synchronous, half-synchronous (every other cycle skipped), quarter-synchronous (only indistinctly), asynchronous, and essentially no response. The nature of the subharmonic single-molecule parametric oscillator behavior is understood in mechanistic detail. Simulations at higher temperatures distinguish the thermal (Brownian) and driven regimes of rotation, elucidated in terms of time-dependent potential energy surfaces for the rotation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据