4.8 Article

Residual stresses in planar solid oxide fuel cells

期刊

JOURNAL OF POWER SOURCES
卷 150, 期 -, 页码 73-77

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2005.02.014

关键词

solid oxide fuel cell; yttria-stabilized zirconia; residual stress; X-ray diffraction; thermoelastic modeling

向作者/读者索取更多资源

The in-plane residual stress distribution in the electrolyte of an anode-supported planar solid oxide fuel cell has been determined using X-ray powder diffraction. Measurements have been carried out with half cells in green state, after co-firing and after anode reduction. The residual stress in the electrolyte is compressive. Values of about -560 MPa are determined at room temperature for an approximately 10 mu m thick electrolyte layer on an oxidized similar to 1.5 mm thick anode substrate, independent of location. Chemical reduction of the anode leads to a slight decrease of the compressive electrolyte stress to -520 MPa. At operation temperature (800 degrees C) the stress is by a factor of about two lower, but remains compressive. The electrolyte results are used to calculate the residual stress in the oxidized and in the reduced anode. Independent of the oxidation state a tensile stress of about 4 MPa is calculated. Implications for anode failure are discussed by comparing this value with the fracture stress of large 200 mm x 200 mm cells at a failure probability of 10(-6). (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据