4.7 Article

Induced Resistance to Methionyl-tRNA Synthetase Inhibitors in Trypanosoma brucei Is Due to Overexpression of the Target

期刊

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
卷 57, 期 7, 页码 3021-3028

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.02578-12

关键词

-

资金

  1. National Institute of Allergy and Infectious Diseases [AI067921, AI084004]

向作者/读者索取更多资源

New classes of antiparasitic drugs active against Trypanosoma brucei are needed to combat human African trypanosomiasis. Inhibitors of methionyl-tRNA synthetase (MetRS) have excellent potential to be developed for this purpose (S. Shibata, J. R. Gillespie, A. M. Kelley, A. J. Napuli, Z. Zhang, K. V. Kovzun, R. M. Pefley, J. Lam, F. H. Zucker, W. C. Van Voorhis, E. A. Merritt, W. G. Hol, C. L. Verlinde, E. Fan, and F. S. Buckner, Antimicrob. Agents Chemother. 55:1982-1989, 2011). In order to assess the potential for resistance to develop against this new class of inhibitors, T. brucei cultures were grown in the presence of MetRS inhibitors or comparison drugs. Resistance up to similar to 50 times the baseline 50% inhibitory concentration (IC50) was induced against a MetRS inhibitor after similar to 120 days. A similar level of resistance to the clinical drug eflornithine was induced after similar to 50 days and for pentamidine after similar to 80 days. Thus, resistance was induced more slowly against MetRS inhibitors than against clinically used drugs. The parasites resistant to the MetRS inhibitor were shown to overexpress MetRS mRNA by a factor of 35 over the parental strain. Southern analysis indicated that the MetRS gene was amplified in the genome by nearly 8-fold. When injected into mice, the MetRS inhibitor-resistant parasites caused a reduced level of infection, indicating that the changes associated with resistance attenuated their virulence. This finding and the fact that resistance to MetRS inhibitors developed relatively slowly are encouraging for further development of this class of compounds. Published studies on other antitrypanosomal drugs have primarily shown that alterations in membrane transporters were the mechanisms responsible for resistance. This is the first published report of induced drug resistance in the African trypanosome due to overexpression of the target enzyme.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据