4.6 Article

Engineering functional changes in Escherichia coli endonuclease III based on phylogenetic and structural analyses

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 40, 页码 34378-34384

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M504916200

关键词

-

资金

  1. NCI NIH HHS [CA 33657] Funding Source: Medline

向作者/读者索取更多资源

Escherichia coli endonuclease III (EcoNth) plays an important cellular role by removing premutagenic pyrimidine damages produced by reactive oxygen species. EcoNth is a bifunctional enzyme that has DNA glycosylase and apurinic/apyrimidinic lyase activities. Using a phylogeny of natural sequences, we selected to study EcoNth serine 39, aspartate 44, and arginine 184, which are presumed to be in the vicinity of the damaged base in the glycosylase-substrate complex. These three amino acids are highly conserved among Nth orthologs, although not among homologous glycosylases, such as MutY, that have different base specificities and no lyase activity. To examine the role of these amino acids in catalysis, we constructed three mutants of EcoNth, in which Ser(39) was replaced with leucine (S39L), Asp(44) was replaced with valine (D44V), and Arg(184) was replaced with alanine (R184A), which are the corresponding residues in EcoMutY. We showed that EcoNth S39L does not have significant glycosylase activity for oxidized pyrimidines, although it maintained AP lyase activity. In contrast, EcoNth D44V retained glycosylase activity against oxidized pyrimidines, but the apparent rate constant for the lyase activity of EcoNth D44V was significantly lower than that of EcoNth, indicating that Asp(44) in EcoNth is required for beta-elimination. Finally, EcoNth R184A maintained lyase activity but exhibited glycosylase specificity different from that of EcoNth. The functional consequences of each of these three substitutions can be rationalized in the context of high resolution protein structures. Thus phylogeny-based scanning mutagenesis has allowed us to identify novel roles for amino acids in the substrate binding pocket of EcoNth in base recognition and/or catalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据