4.6 Article

Characterization of the monovalent ion position and hydrogen-bond network in guanine quartets by DFT calculations of NMR parameters

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 11, 期 20, 页码 6064-6079

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200500198

关键词

density functional calculations; DNA structures; hydrogen bonds; monovalent ions; NMR spectroscopy

资金

  1. Engineering and Physical Sciences Research Council [GR/S06233/01] Funding Source: researchfish

向作者/读者索取更多资源

Conformational stability of G-quartets found in telomeric DNA quadruplex structures requires the coordination of monovalent ions. Here, an extensive Hartree-Fock and density functional theory analysis of the energetically favored position of Li+, Na+, and K+ ions is presented. The calculations show that at quartet-quartet distances observed in DNA quadruplex structures (3.3 angstrom), the Li+ and Na+ ions favor positions of 0.55 and 0.95 angstrom outside the plane of the G-quartet, respectively. The larger K+ ion prefers a central position between successive G-quartets. The energy barrier separating the minima in the quartet-ion-quartet model are much smaller for the Li+ and Na+ ions compared with the K+ ion; this suggests that K+ ions will not move as freely through the central channel of the DNA quadruplex. Spin-spin coupling constants and isotropic chemical shifts in G-quartets extracted from crystal structures of K+- and Na+ -coordinated DNA quadruplexes were calculated with B3LYP/6-311G(d). The results show that the sizes of the trans-hydrogen-bond couplings are influenced primarily by the hydrogen bond geometry and only slightly by the presence of the ion. The calculations show that the R-N2N7 distance of the N2-H2 (...) N7 hydrogen bond is characterized by strong correlations to both the chemical shifts of the donor group atoms and the (h2)J(N2N7) couplings. In contrast, weaker correlations between the (h3)J(N1C6) couplings and single geometric factors related to the N1-H1 (...) O6=C6 hydrogen bond are observed. As such, deriving geometric information on the hydrogen bond through the use of trans-hydrogen-bond couplings and chemical shifts is more complex for the N1-H1 (...) O6=C6 hydrogen bond than for the N2-H2 (...) N7 moiety. The computed trans-hydrogen-bond couplings are shown to correlate with the experimentally determined couplings. However, the experimental values do not show such strong geometric dependencies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据