4.7 Article

Overcoming stiffness in stochastic simulation stemming from partial equilibrium: A multiscale Monte Carlo algorithm

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 123, 期 14, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2046628

关键词

-

向作者/读者索取更多资源

In this paper the problem of stiffness in stochastic simulation of singularly perturbed systems is discussed. Such stiffness arises often from partial equilibrium or quasi-steady-state type of conditions. A multiscale Monte Carlo method is discussed that first assesses whether partial equilibrium is established using a simple criterion. The exact stochastic simulation algorithm (SSA) is next employed to sample among fast reactions over short time intervals (microscopic time steps) in order to compute numerically the proper probability distribution function for sampling the slow reactions. Subsequently, the SSA is used to sample among slow reactions and advance the time by large (macroscopic) time steps. Numerical examples indicate that not only long times can be simulated but also fluctuations are properly captured and substantial computational savings result. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据