4.7 Article

Optimal control of ultrafast cis-trans photoisomerization of retinal in rhodopsin via a conical intersection -: art. no. 144508

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 123, 期 14, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2034488

关键词

-

向作者/读者索取更多资源

Optimal control simulation is applied to the cis-trans photoisomerization of retinal in rhodopsin within a two-dimensional, two-electronic-state model with a conical intersection [S. Hahn and G. Stock, J. Phys. Chem. B 104, 1146 (2000)]. For this case study, we investigate coherent control mechanisms, in which laser pulses work cooperatively with a conical intersection that acts as a wave-packet cannon. Optimally designed pulses largely consist of shaping subpulses that prepare a wave packet, which is localized along a reaction coordinate and has little energy in the coupling mode, through multiple electronic transitions. This shaping process is shown to be essential for achieving a high target yield although the envelopes of the calculated pulses depend on the local topography of the potential-energy surfaces around the conical intersection and the choice of target. The control mechanisms are analyzed by considering the motion of reduced wave packets in a nuclear configuration space as well as by snapshots of probability current-density maps. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据