4.7 Article

Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo

期刊

CIRCULATION RESEARCH
卷 97, 期 8, 页码 781-788

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000186193.22438.6c

关键词

microcirculation; endothelium-dependent hyperpolarizing factor; myoendothelial coupling; gap junctions; acetylcholine-induced hyperpolarization

向作者/读者索取更多资源

A smooth muscle hyperpolarization is essential for endothelium-dependent hyperpolarizing factor-mediated dilations. It is debated whether the hyperpolarization is induced by a factor ( endothelium-derived hyperpolarizing factor) and/or is attributable to direct current transfer from the endothelium via myoendothelial gap junctions. Here, we measured membrane potential in endothelial cells ( EC) and smooth muscle cells ( SMC) in vivo at rest and during acetylcholine ( ACh) application in the cremaster microcirculation of mice using sharp microelectrodes before and after application of specific blockers of Ca2+-dependent K+ channels ( K-Ca). Moreover, diameter changes in response to ACh were studied. Membrane potential at rest was lower in EC than SMC ( - 46.6 +/- 1.0 versus - 36.5 +/- 1.0mV, P < 0.05). Bolus application of ACh induced robust hyperpolarizations in EC and SMC, but the amplitude ( 11.1 +/- 0.9 versus 5.1 +/- 0.9mV, P < 0.05) and duration of the response ( 10.7 +/- 0.8 versus 7.5 +/- 1.0s, P < 0.05) were larger in EC. Blockers of large conductance K-Ca ( charybdotoxin or iberiotoxin) abrogated ACh-induced hyperpolarizations in SMC but did not alter endothelial hyperpolarizations. In contrast, apamin, a blocker of small conductance K-Ca abolished ACh- induced hyperpolarizations in EC and had only small effects on SMC. ACh-induced dilations were strongly attenuated by iberiotoxin but only slightly by apamin. We conclude that myoendothelial coupling in arterioles in vivo in the murine cremaster is weak, as EC and SMC behaved electrically different. Small conductance K-Ca mediate endothelial hyperpolarization in response to ACh, whereas large conductance K-Ca are important in SMC. Because tight myoendothelial coupling was found in vitro in previous studies, we suggest that it is differentially regulated between vascular beds and/or by mechanisms acting in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据