4.6 Article

Pore structure in supermacroporous polyacrylamide based cryogels

期刊

SOFT MATTER
卷 1, 期 4, 页码 303-309

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b510010k

关键词

-

向作者/读者索取更多资源

Pore size and thickness of pore walls in macroporous polyacrylamide gels, so-called cryogels (pAAm-cryogels), were controlled by varying the content of monomers in the initial reaction mixture and the cross-linker used. The thickness of pore walls in pAAm-cryogels increased with increasing concentration of monomers in the initial reaction mixture. Pore volume in the supermacroporous pAAm-cryogels was in the range of 70-93% and decreased with increasing concentration of monomers in the reaction feed. The porous structure of the pAAm-cryogels was visualized using environmental scanning electron microscopy (ESEM) that allowed monitoring of the dehydration process in pAAm-cryogels. The accessibility of ligands covalently coupled to the polymer backbone for low molecular weight target, Cu(II) ions, and high molecular weight target, the protein lysozyme, was assessed for pAAm-cryogels produced from feeds with different monomer concentration. The amount of bound Cu(II) ions increased linearly with increasing monomer concentration in the reaction feed, suggesting that all ligands are equally accessible for small targets. On the contrary, lysozyme binding demonstrated a clear maximum at monomer concentration about 18% suggesting that only ligrands present at the surface of pore walls are accessible for high molecular weight targets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据