4.7 Article

A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 69, 期 20, 页码 4759-4771

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2005.04.015

关键词

-

向作者/读者索取更多资源

Sulfur isotope fractionation during dissimilatory sulfate reduction has been conceptually described by the widely accepted Rees model as related to the stepwise reduction of sulfate to sulfide within the cells of bacteria. The magnitude of isotope fractionation is determined by the interplay between different reduction steps in a chain of reactions. Here we present a revision of Rees' model for bacterial sulfate reduction that includes revised fractionation factors for the sulfite-sulfide step and incorporates new forward and reverse steps in the reduction of sulfite to sulfide, as well as exchange of sulfide between the cell and ambient water. With this model we show that in contrast to the Rees model, isotope fractionations well in excess of -46 parts per thousand are possible. Therefore, some of the large sulfur isotope fractionations observed in nature can be explained without the need of alternate pathways involving the oxidative sulfur cycle. We use this model to predict that large fractionations should occur under hypersulfidic conditions and where electron acceptor concentrations are limiting. Copyright (c) 2005 Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据