4.8 Article

Misregulated Wnt/β-catenin signaling leads to ovarian granulosa cell tumor development

期刊

CANCER RESEARCH
卷 65, 期 20, 页码 9206-9215

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-05-1024

关键词

-

类别

向作者/读者索取更多资源

Misregulation of the Wnt/beta-catenin signaling pathway is a hallmark of several forms of cancer. Components of the Wnt/beta-catenin pathway are expressed in ovarian granulosa cells; nevertheless, its potential involvement in granulosa cell tumorigenesis has not been examined. To this end, human (n = 6) and equine (n = 18) granulosa cell tumors (GCT) were analyzed for beta-catenin expression by immunohistochemistry. Unlike granulosa cells of normal ovaries, most (15 of 24) GCT samples showed nuclear localization of beta-catenin, suggesting that activation of the Wnt/beta-catenin pathway plays a role in the etiology of GCT. To confirm this hypothesis, Catnb(flox(ex3)/+); Amhr2(crc/+) mice that express a dominant stable beta-catenin mutant in their granulosa cells were generated. These mice developed follicle-like structures containing disorganized, pleiomorphic granulosa by 6 weeks of age. Even in older mice, these follicle-like lesions grew no larger than the size of antral follicles and contained very few proliferating cells. Similar to corpora lutea, the lesions were highly vascularized, although they did not express the luteinization marker Cyp11a1. Catnb(flox(ex3)/+); Amhr2(cre/+) females were also found to be severely subfertile, and fewer corpora lutea were found to form in response to exogenous gonadotropin compared with control mice. In older mice, the ovarian lesions often evolved into GCT, indicating that they represent a pretumoral intermediate stage. The GCT in Catnb(flox(ex3)/+); Amhr2(cre/+) mice featured many histopathologic similarities to the human disease, and prevalence of tumor development attained 57% at 7.5 months of age. Together, these studies show a causal link between misregulated Wnt/beta-catenin signaling and GCT development and provide a novel model system for the study of GCT biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据