4.7 Article

Silica encapsulation and magnetic properties of FePt nanoparticles

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 290, 期 2, 页码 444-449

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2005.04.050

关键词

FePt nanoparticles; silica; core-shell; sol-gel; colloids

向作者/读者索取更多资源

Core-shell nanoparticles have emerged as an important class of functional nanostructures with potential applications in many diverse fields, especially in health sciences. We have used a modified aqueous sol-gel route for the synthesis of size-selective FePt@SiO2 core-shell nanoparticles. In this approach, oleic acid and olyel amine stabilized FePt nanoparticles are first encapsulated through an aminopropoxysilane (APS) monolayer and then subsequent condensation of triethoxysilane (TEOS) on FePt particle surface. These well-defined FePt@SiO2 core-shell nanoparticles with narrow size distribution become colloidal in aqueous media, and can thus be used as carrier fluid for biomolecular complexes. In comparison, the scarce hydrophilic nature of oleic acid monolayers on FePt particle surface yields an edgy partial coating of silica when only TEOS is applied for the surface modification. The synthesized core-shell nanoparticles were characterized by direct techniques of high resolution transmission electron microscopy (HRTEM), EDS and indirectly via UV-vis absorption and FTIR studies. The FePt@SiO2 nanoparticles exhibit essential characteristics of superparamagnetic behavior, as investigated by SQUID magnetometry. The blocking temperatures (T-B) of FePt and FePt@SiO2 (135 and 80 K) were studied using zero field cooled (ZFC)/field cooled (FC) curves. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据