4.5 Article

Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins Twinkle and Twinky

期刊

HUMAN MOLECULAR GENETICS
卷 14, 期 20, 页码 2981-2990

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddi328

关键词

-

向作者/读者索取更多资源

Infantile onset spinocerebellar ataxia (IOSCA) (MIM 271245) is a severe autosomal recessively inherited neurodegenerative disorder characterized by progressive atrophy of the cerebellum, brain stem and spinal cord and sensory axonal neuropathy. We report here the molecular background of this disease based on the positional cloning/candidate approach of the defective gene. Having established the linkage to chromosome 10q24, we restricted the critical DNA region using single nucleotide polymorphism-based haplotypes. After analyzing all positional candidate transcripts, we identified two point mutations in the gene C10orf2 encoding Twinkle, a mitochondrial deoxyribonucleic acid (mtDNA)-specific helicase, and a rarer splice variant Twinky, underlying IOSCA. The founder IOSCA mutation, homozygous in all but one of the patients, leads to a Y508C amino acid change in the polypeptides. One patient, heterozygous for Y508C, carries a silent coding region cytosine to thymine transition mutation in his paternal disease chromosome. This allele is expressed at a reduced level, causing the preponderance of messenger RNAs encoding Y508C polypeptides and thus leads to the IOSCA disease phenotype. Previously, we have shown that different mutations in this same gene cause autosomal dominant progressive external ophthalmoplegia (adPEO) with multiple mtDNA deletions (MIM 606075), a neuromuscular disorder sharing a spectrum of symptoms with IOSCA. IOSCA phenotype is the first recessive one due to Twinkle and Twinky mutations, the dominant PEO mutations affecting mtDNA maintenance, but in IOSCA, mtDNA stays intact. The severe neurological phenotype observed in IOSCA, a result of only a single amino acid substitution in Twinkle and Twinky, suggests that these proteins play a crucial role in the maintenance and/or function of specific affected neuronal subpopulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据