4.2 Article

Synthesis of poly(Pro-Hyp-Gly)n by direct polycondensation of (Pro-Hyp-Gly)n, where n = 1, 5, and 10, and stability of the triple-helical structure

期刊

BIOPOLYMERS
卷 79, 期 3, 页码 163-172

出版社

WILEY
DOI: 10.1002/bip.20348

关键词

triple-helix formation; nanofiber-like structure formation; thermal stability of triple-helix; collagen-model peptide

向作者/读者索取更多资源

Pro-Hyp-Gly is a characteristic amino acid sequence found in fibrous collagens, and (Pro-Hyp-Gly)(10), which has been widely used as a collagen-model peptide, forms a stable triple-helical structure. Here, we synthesized polypeptides consisting of the Pro-Hyp-Gly sequence by direct polycondensation of (Pro-Hyp-Gly)(n), where n = 1, 5, and 10, using 1-hydroxybenzotriazole and 1-ethyl-3-(3-dimethyl-aminopropyl)-carbodiimide hydrochloride in both phosphate buffer (pH = 7.4) and dimethylsulfoxide (DMSO) solutions for 48 h at 20 degrees C. The reaction of (Pro-Hyp-Gly)(5) and (Pro-Hyp-Gly)(10) in DMSO successfully gave polypeptides with molecular weights over 10,000, whereas low molecular weight products were obtained by reaction in phosphate buffer (pH = 7.4). In contrast, Pro-Hyp-Gly at a concentration of 50 mg/mL in phosphate buffer (pH = 7.4) gave polypeptides with molecular weights over 10,000. The Fourier transform infrared (FTIR) and H-1 nuclear magnetic resonance (NMR) spectra of poly(Pro-Hyp-Gly)(10) revealed that the polymerization of (Pro-Hyp-Gly)(10) described in this report had no side reactions. Each polypeptide obtained shows a collagen-like triple-helical structure, and the triple-helical structures of poly(Pro-Hyp-Gly) and poly(Pro-Hyp-Gly)(10) were stable up to T = 80 degrees C, which suggests that the high molecular weight promotes stability of the triple-helical structure, in addition to the high Hyp content. Furthermore, transmission electron microscopy (TEM) observations show that poly(ProHyp-Gly)(10) aggregates to form nanofiber-like structures about 10 nm in width, which suggests that a Pro-Hyp-Gly repeating sequence contains enough information for triple-helix formation, and for subsequent nanofiber-like structure formation. (c) 2005 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据