4.5 Article

Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners

期刊

JOURNAL OF CELL SCIENCE
卷 118, 期 20, 页码 4879-4888

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.02606

关键词

PH domain; PI 3-kinase; PtdIns(3,4,5)P-3; PIP3; Akt kinase; cell adhesion; GFP

资金

  1. Intramural NIH HHS Funding Source: Medline
  2. Wellcome Trust Funding Source: Medline

向作者/读者索取更多资源

Several pleckstrin-homology (PH) domains with the ability to bind phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P-3, PIP3] were expressed as green fluorescent protein (GFP) fusion proteins to determine their effects on various cellular responses known to be activated by PIP3. These proteins comprised the PH domains of Akt, ARNO, Btk or GRP1, and were found to show growth-factor-stimulated and wortmannin-sensitive translocation from the cytosol to the plasma membrane in several cell types, indicating their ability to recognize PIP3. Remarkably, although overexpressed Akt-PH-GFP and Btk-PH-GFP were quite potent in antagonizing the PIP3-mediated activation of the Akt protein kinase, such inhibition was not observed with the other PH domains. By contrast, expression of the PH domains of GRP1 and ARNO, but not of Akt or Btk, inhibited the attachment and spreading of freshly seeded cells to culture dishes. Activation of PLC gamma by epidermal growth factor (EGF) was attenuated by the PH domains of GRP1, ARNO and Akt, but was significantly enhanced by the Btk PH domain. By following the kinetics of expression of the various GFP-fused PH domains for several days, only the PH domain of Akt showed a lipid-binding-dependent self-elimination, consistent with its interference with the anti-apoptotic Akt signaling pathway. Mutations of selective residues that do not directly participate in PIP3 binding in the GRP1-PH and Akt-PH domain were able to reduce the dominant-negative effects of these constructs yet retain their lipid binding. These data suggest that interaction with and sequestration Of PIP3 may not be the sole mechanism by which PH domains interfere with cellular responses and that their interaction with other membrane components, most probably with proteins, allows a more specific participation in the regulation of specific signaling pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据