4.5 Article

Synchronizability of networks of chaotic systems coupled via a graph with a prescribed degree sequence

期刊

PHYSICS LETTERS A
卷 346, 期 4, 页码 281-287

出版社

ELSEVIER
DOI: 10.1016/j.physleta.2005.07.089

关键词

eigenvalue analysis; nonlinear dynamics; random graphs; scale free networks; synchronization

向作者/读者索取更多资源

Generally, synchronization in a network of chaotic systems depends on the underlying coupling topology. Recently, there have been several studies conducted to determine what features of this topology contribute to the ability to synchronize. A short diameter has been proposed by several authors as a means to facilitate synchronization whereas others point to features such as the homogeneity of the degree sequence. Recently, it has been shown that the degree sequence by itself is not sufficient to determine synchronizability. The purpose of this Letter is to continue this study. For a given degree sequence, we construct two connected graphs with this degree sequence whose synchronizability can be quite different. In particular, we construct a graph with low synchronizability which improves upon previous bounds under certain conditions and we construct a graph which has synchronizability that is asymptotically maximal. On the other hand, we show analytically that for a random network model, homogeneity of the degree sequence is beneficial to synchronization. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据