4.7 Article

Bending rigidity and induced persistence length of molecular bottle brushes: A self-consistent-field theory

期刊

MACROMOLECULES
卷 38, 期 21, 页码 8891-8901

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma050871z

关键词

-

向作者/读者索取更多资源

The two-gradient version of the Scheutjens-Fleer self-consistent-field (SF-SCF) approach is employed for the analysis of the average conformations of side chains and corresponding contribution to the bending rigidity, or equivalently the induced persistence length, of molecular bottle brushes both under good and theta solvent conditions. This study is targeted to unravel conformational properties of poly(L-lysine)-graft-poly(ethylene glycol) copolymers in dilute aqueous solutions, where variation of temperature changes the solvent strength for poly(ethylene glycol) in a wide range. We focus on molecular brushes with moderate and high grafting density and large degree of polymerization of grafted chains. In this limit the predictions of an analytical mean-field theory for the dependences of the structural properties of the bottle brush on the architectural parameters are well confirmed. Both the induced persistence length and the ratio between the induced persistence length and the cross-sectional thickness of the bottle brush increase with increasing grafting density and/or increasing degree of polymerization of the grafted chains. However, in the range of moderate chain lengths and grafting densities this ratio remains small, which explains why the effects of the induced bending rigidity on the apparent persistence length have not been observed in earlier numerical experiments. We argue that only molecular bottle brushes with densely grafted long chains possess the potential for lyotropic ordering, both in solutions and at interfaces, due to the expected high effective segment asymmetry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据