4.8 Article

Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover

期刊

NATURE
卷 437, 期 7062, 页码 1187-1191

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature04084

关键词

-

资金

  1. Wellcome Trust Funding Source: Medline

向作者/读者索取更多资源

The coordinated regulation of gene expression is required for homeostasis, growth and development in all organisms. Such coordination may be partly achieved at the level of messenger RNA stability(1), in which the targeted destruction of subsets of transcripts generates the potential for cross-regulating metabolic pathways. In Escherichia coli, the balance and composition of the transcript population is affected by RNase E, an essential endoribonuclease that not only turns over RNA but also processes certain key RNA precursors(2-10). RNase E cleaves RNA internally, but its catalytic power is determined by the 50 terminus of the substrate, even if this lies at a distance from the cutting site(11-14). Here we report crystal structures of the catalytic domain of RNase E as trapped allosteric intermediates with RNA substrates. Four subunits of RNase E catalytic domain associate into an interwoven quaternary structure, explaining why the subunit organization is required for catalytic activity. The subdomain encompassing the active site is structurally congruent to a deoxyribonuclease, making an unexpected link in the evolutionary history of RNA and DNA nucleases. The structure explains how the recognition of the 50 terminus of the substrate may trigger catalysis and also sheds light on the question of how RNase E might selectively process, rather than destroy, specific RNA precursors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据