4.7 Article

Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers

期刊

JOURNAL OF FLUID MECHANICS
卷 541, 期 -, 页码 21-54

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112005005872

关键词

-

向作者/读者索取更多资源

This work can be viewed as a reprise of Head & Bandyopadhyay's (J. Fluid Mech. vol. 107, 1981, p. 297) original boundary-layer visualization study although in this instance we make use of stereo particle image velocimetry (PIV), techniques to obtain a quantitative view of the turbulent structure. By arranging the laser light-sheet and image plane of a stereo PIV system in inclined spanwise/wall-normal planes (inclined at both 45 degrees and 135 degrees to the streamwise axis) a unique quantitative view of the turbulent boundary layer is obtained. Experiments are repeated across a range of Reynolds numbers, Re(tau) approximate to 690-2800. Despite numerous experimental challenges (due to the large out-of-plane velocity components), mean flow and Reynolds stress profiles indicate that the salient features of the turbulent flow have been well resolved. The data are analysed with specific attention to a proposed hairpin eddy model. In-plane two-dimensional swirl is used to identify vortical eddy structures piercing the inclined planes. The vast majority of this activity occurs in the 1350 plane, indicating an inclined eddy structure, and Biot-Savart law calculations are carried out to aid in the discussion. Conditional averaging and linear stochastic estimation results also support the presence of inclined eddies, arranged about low-speed regions. In the 135 degrees plane, instantaneous swirl patterns exhibit a predisposition for counter-rotating vortex pairs (arranged with an ejection at their confluence). Such arrangements are consistent with the hairpin packet model. Correlation and scaling results show outer-scaling to be the correct way to quantify the characteristic spanwise length scale across the log and wake regions of the boundary layers (for the range of Reynolds numbers tested). A closer investigation of two-point velocity correlation contours indicates the occurrence of a distinct two-regime behaviour, in which contours (and hence streamwise velocity fluctuations) either appear to be 'attached' to the buffer region, or 'detaching' from it. The demarcation between these two regimes is found to scale well with outer variables. The results are consistent with a coherent structure that becomes increasingly uncoupled (or decorrelated) from the wall as it grows beyond the logarithmic region, providing additional support for a wall-wake description of turbulent boundary layers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据