4.7 Article

The influence of particle size on the surface roughness of pharmaceutical excipient compacts

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2005.06.060

关键词

particle size; surface roughness; profilometry; excipients; mechanical properties; powder compaction

向作者/读者索取更多资源

The effect of initial powder particle size on the surface roughness of compacted pharmaceutical materials was studied using non-contact optical profilometry. Various particle size grades of two commonly used pharmaceutical excipients, microcrystalline cellulose (MCC) and lactose monohydrate (LMH), were compacted to a solid fraction of 0.85. The compression stress values CSm (maximum) and CS0 (equilibrium), were recorded during uniaxial compression and triaxial decompression profiles for assessing the extent and mechanism of deformation. MCC samples were compressed beyond the reported yield pressure (Yp) values for these materials, whereas LMH samples were compressed only up to 55% of the reported Yp. As a result, two distinct compression behaviors could be classified for these excipients where CS0 > Yp (MCC) or CS0 < Yp (LMH). The brittle-ductile transition diameter (D-crit) values for these materials were important in predicting the deformation mechanism for each powder. The surface roughness parameter, Sq (root mean square roughness), was correlated with particle size and compression stress. Sq values increased with particle size for both excipient categories; LMH samples were found to have a stronger dependence on particle size than MCC since most LMH powders experienced incomplete fracture of particles during compression, whereas all MCC powders showed evidence of complete plastic deformation. The tensile strength (TS), an important mechanical property of the compacts, decreased with increasing particle size for both material types, and showed strong correlations with surface roughness. Smoother compacts exhibited higher values of TS, possibly due to the more intricate bonding between smaller particles. Hence, surface roughness parameters can be used as a non-destructive method for predicting the mechanical properties of materials. Profilometry was found to be a useful tool for understanding the relationship between initial particle size and the surface roughness of compacts from either brittle or ductile materials. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据