4.8 Article

Visualization of retrovirus budding with correlated light and electron microscopy

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0504812102

关键词

assembly; gag; multiphoton; fluorescence; tracking

资金

  1. NCI NIH HHS [CA 20081, R01 CA020081] Funding Source: Medline
  2. NIBIB NIH HHS [9P41 EB 001976, P41 EB001976] Funding Source: Medline

向作者/读者索取更多资源

We have used correlated scanning EM (SEM) and multiphoton fluorescence microscopy to visualize budding of virus-like particles (VLPs) of Rous sarcoma virus (RSV) and HIV type 1 (HIV-1). When the Gag structural protein was expressed alone as a GFP fusion, most budding particles appeared morphologically aberrant, but normal assembly could be rescued by coexpression of untagged Gag protein. Imaging of live cells allowed budding to be seen in real time as the disappearance of fluorescent spots from the dorsal cell surface. The disappearance of very bright spots containing clusters of VLPs often occurred in a stepwise fashion. Even after imaging times >1 h, only a minority of the spots disappeared, suggesting that some might be budding-incompetent complexes. On individual cells, we enumerated both the fluorescent puncta and the budding structures visible by SEM and compared these numbers for WT Gag proteins and for Gag proteins that were blocked at the last step in budding by a late domain mutation. For the mutant HIV-1 and RSV proteins, almost all of the fluorescent spots corresponded to budding structures. For WT RSV, the dorsal side of cells showed 3-fold more fluorescent spots than budding structures, suggesting that formation of the polymerized Gag shell precedes bulging out of the membrane. For WT HIV-1, most fluorescent spots corresponded with budding structures, consistent with the slower budding rate of this virus. Combining these two types of microscopy will allow innovative approaches for elucidating the mechanism of retrovirus budding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据