4.5 Article

Assessment of UDP-glucuronosyltransferase catalyzed formation of ethyl glucuronide in human liver microsomes and recombinant UGTs

期刊

FORENSIC SCIENCE INTERNATIONAL
卷 153, 期 2-3, 页码 109-116

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.forsciint.2004.12.003

关键词

ethyl glucuronide; UDP-glucuronosyltransferase; alcohol metabolism

向作者/读者索取更多资源

While ethanol is primarily metabolized to acetaldehyde and acetic acid via alcohol dehydrogenase, a minor but increasingly important pathway in the field of forensic science involves the conjugation of glucuronic acid to form an ethyl glucuronide (EtG) metabolite. The kinetics of ethyl glucuronide formation were examined in human liver microsomes (HLM) and recombinant UDP-glucuronosyltransferases (UGTs). The metabolite exhibited a relatively slow rate of formation in a human liver microsome mix of 75.4 pmol/(min/mg). Further investigation identified multiple UGT isoforms to be responsible for catalyzing the addition of glucuronic acid to ethanol, with UGT1A1 and 2B7 being the two most prevalent isoforms. Co-incubation with bilirubin or 3'-azido-3'-deoxythymidine (UGT1A1 and 2137 inhibitors, respectively) inhibited the greatest amount of ethyl glucuronide formation, though other UGT inhibitors also showed some effect. Enzyme kinetics were performed in human liver microsomes and recombinant UGT enzymes. The apparent K-m (K-mapp) and V-max values were determined to be 0.17 +/- 0.08 mM and 75.98 +/- 5.63 pmol/(min/mg) (human liver microsomes), 0.03 +/- 0.01 mM and 25.22 +/- 3.45 pmol/(min/mg) (UGT1A1), and 0.11 +/- 0.04 mM and 52.03 +/- 9.8 pmol/(min/mg) (UGT2B7). Thus, it appears that multiple UGTs are responsible for the formation of ethyl glucuronide and that any functional differences in the enzymology underlying ethyl glucuronide formation would most likely be masked by a combination of other enzymatic pathways. (c) 2004 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据