4.2 Article

Ablation of transparent materials using excimer lasers for photonic applications

期刊

OPTICAL REVIEW
卷 12, 期 6, 页码 427-441

出版社

OPTICAL SOC JAPAN
DOI: 10.1007/s10043-005-0427-x

关键词

ablation; contour scanning; excimer laser; glass; microlens; micromachining; optical fiber connector; polymer; waveguides

类别

向作者/读者索取更多资源

For many years, the development of effective ablation or laser machining techniques for making micro-optical components has been the key factor in the birth of new photonic devices and systems. In this article, the ablation characteristics of two types of the most important transparent materials, transparent polymers and glasses, are studied. Simple shaped microcavities are first machined for studying the fundamental ablation parameters, including threshold fluence, effective absorption coefficient, and ablation rate. In studying polymer ablation, five standard grades and five proprietary polymeric compounds are selected. Ablation techniques using these transparent polymers for making arrayed ferrules and curved microlenses are presented. Applications of these ablated microstructures for optical fiber connectors, optical fiber coupling and alignment, and transparent chip encapsulants, are introduced and demonstrated with emphasis on the quality of the ablated profiles and dimensions to satisfy the required performance. In glass ablation, borosilicate glasses are considered and their associated ablation behaviors are studied. The procedures to ablate glass-based arrayed microstructures with flat and curved surfaces are described. The utilizations of these arrayed microstructures for optical waveguide, wave absorber, and beam guider, are specifically discussed. Finally, concluding remakes for future trends are presented. (c) 2005 The Optical Society of Japan.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据