4.5 Article Proceedings Paper

Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal

期刊

JOURNAL OF BIOMEDICAL OPTICS
卷 10, 期 6, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.2136147

关键词

optical coherence tomography; medical imaging; ophthalmic imaging

资金

  1. NIBIB NIH HHS [R21 EB000243] Funding Source: Medline

向作者/读者索取更多资源

Fourier domain (FD) techniques have increasingly gained attention in optical coherence tomography (OCT). This is primarily due to their demonstrated sensitivity of two to three orders of magnitude over conventional time-domain techniques. FDOCT images are subject to two primary sources of artifacts. First, a complex conjugate ambiguity arises because the Fourier transform of the real-valued spectral interferometric signal is Hermitian symmetric. This ambiguity leads to artifactual superposition of reflectors at positive and negative pathlength differences between the sample and reference reflectors. Second, noninterferometric and sample autocorrelation terms appear at dc, obscuring reflectors at zero pathlength difference. We show that heterodyne detection in swept-source OCT (SSOCT) enables the resolution of complex conjugate ambiguity and the removal of noninterferometric and autocorrelation artifacts. We also show that complex conjugate ambiguity resolution via frequency shifting circumvents falloff induced by finite source linewidth in SSOCT when samples are shifted to large pathlength differences. We describe an efficient heterodyne SSOCT design that enables compensation of power losses from frequency-shifting elements. Last, we demonstrate this technique, coupled with wavenumber triggering and electronic demodulation, for in vivo imaging of the human anterior eye segment. (C) 2005 Society of Photo-Optical Instrumentation Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据