4.4 Article

Chondroconductive potential of tantalum trabecular metal

出版社

WILEY
DOI: 10.1002/jbm.b.30242

关键词

articular cartilage; collagen; scaffolds; tissue engineering

向作者/读者索取更多资源

Mesenchymal stem cells or chondrocytes have been implanted into joints in biodegradable matrices in order to improve the quality of healing cartilage defects; however, insufficient biomechanical strength of the construct at implantation is a limiting factor for clinical application. Logically, a construct with better biomechanical characteristics would provide better results. Tantalum trabecular metal (TTM) is osteoconductive and mechanically similar to subchondral bone. The objective of this pilot study was to determine if TTM is also chondroconductive. Small sections of TTM were cultured with emu and canine chondrocytes in static and dynamic culture environments. The sections cultured in dynamic bioreactors were diffusely covered with a cartilaginous matrix. Sections cultured in static conditions had no growth. Histologic evaluation from emu and canine dynamic cultures showed tissue that was heavily populated with mesenchymal cells that resembled chondrocytes, and glycosaminoglycan staining that was distributed throughout the matrix. Type H collagen content in the canine dynamic culture was 84% by SDS-PAGE. Tantalum trabecular metal is chondroconductive in vitro in a dynamic environment when cultured with adult canine or emu chondrocytes. This technology could be expanded to determine if cartilaginous-metallic constructs may be used for joint resurfacing of osteoarthritic joints. (c) 2005 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据