4.8 Article

Fate of the Josephson effect in thin-film superconductors

期刊

NATURE PHYSICS
卷 1, 期 2, 页码 117-121

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys154

关键词

-

向作者/读者索取更多资源

The d.c. Josephson effect refers to the dissipationless electrical current-the supercurrent-that can be sustained across a weak link connecting two bulk superconductors. This effect probes the nature of the superconducting state, which depends crucially on spatial dimensionality. For bulk (that is, three-dimensional) superconductors, the superconductivity is most robust and the Josephson effect is sustained even at non-zero temperature. However, in wires and thin films, thermal and quantum fluctuations play a crucial role. In superconducting wires, these effects qualitatively modify the electrical transport across a weak link. Despite several experiments involving weak links between thin-film superconductors, little theoretical attention has been paid to the electrical conduction in such systems. Here, we analyse the case of two superconducting thin films connected by a point contact. Remarkably, the Josephson effect is absent at non-zero temperature. The point-contact resistance is non-zero and varies with temperature in a nearly activated fashion, with a universal energy barrier set by the superfluid stiffness characterizing the films. This behaviour reflects the subtle nature of thin-film superconductors and should be observable in future experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据