4.5 Article

Mechanical loading-induced gene expression and BMD changes are different in two inbred mouse strains

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 99, 期 5, 页码 1951-1957

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00401.2005

关键词

bone density; mice; bone size; bone formation; bone resorption

向作者/读者索取更多资源

Our goal is to evaluate skeletal anabolic response to mechanical loading in different age groups of C57B1/6J (B6) and C3H/HeJ (C3H) mice with variable loads using bone size, bone mineral density (BMD), and gene expression changes as end points. Loads of 6-9 N were applied at 2 Hz for 36 cycles for 12 days on the tibia of 10-wk-old female B6 and C3H mice. Effects of a 9-N load on 10-, 16-, and 36-wk-old C3H mice were also studied. Changes in bone parameters were measured using peripheral quantitative computed tomography, and gene expression was determined by real-time PCR. Total volumetric BMD was increased by 5 and 15%, respectively, with 8- and 9-N loads in the B6, but not the C3H, mice. Increases of 20 and 12% in periosteal circumference were reflected by dramatic 44 and 26% increases in total area in B6 and C3H mice, respectively. The bone response to bending showed no difference in the three age groups of B6 and C3H mice. At 2 days, mechanical loading resulted in significant downregulation in expression of bone resorption (BR), but not bone formation (BF) marker genes. At 4 and 8 days of loading, expression of BF marker genes (type I collagen, alkaline phosphatase, osteocalcin, and bone sialoprotein) was increased two- to threefold and expression of BR marker genes (matrix metalloproteinase-9 and thrombin receptor-activating peptide) was decreased two- to fivefold. Although expression of BF marker genes was upregulated four-to eightfold at 12 days of training, expression of BR marker genes was upregulated seven- to ninefold. Four-point bending caused significantly greater changes in expression of BF and BR marker genes in bones of the B6 than the C3H mice. We conclude that mechanical loading-induced molecular pathways are activated to a greater extent in the B6 than in the C3H mice, resulting in a higher anabolic response in the B6 mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据